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Società Italiana di Fisica
Springer-Verlag 2001

The lifetime of the soliton in the improved Davydov model
at the biological temperature 300 K for protein molecules

Pang Xiao-fenga

Institute of High-energy Electronics, University of Electronic Science and Technology of Chengdu 610054, PR China

and

International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015, PR China

and

Department of Physics, University of Kaiserslautern, 67663, Kaiserslautern, Germany

and

Chinese Center of Advanced Science and Technology (World Lab.) PO Box 8730, Beijing 100080, PR China

Received 7 January 1999 and Received in final form 16 August 2000

Abstract. We study the effects of quantum fluctuations and thermal perturbations on the lifetime of the
soliton in the improved Davydov model proposed by us with two-quanta and with an added interaction.
By using quantum perturbation theory, we compute the soliton lifetime for a wide ranges of parameter
values relevant for protein molecules. The lifetime of the new soliton at the biological temperature 300 K
is of the order of 10−10 second or τ/τ0 ≥ 500 for parameters appropriate to α-helical protein molecules.
This shows clearly that the new soliton in the improved model is a viable mechanism for the bio-energy
transport in the α-helix region of proteins.

PACS. 87.15.He Dynamics and conformational changes – 31.50.+w Excited states –
36.20.-r Macromolecules and polymer molecules – 65.20.+w Heat capacities of liquids

1 Physical and biological background

A lot of biological processes are associated with energy
transport through protein molecules, where the bio-energy
is released by hydrolysis of adenosine triphosphate (ATP).
The transport is a fundamental problem in biology, but
the mechanism is an open problem which continues to be
of great interest. As an alternative to electronic mecha-
nisms [1], one can assume that the energy is stored as
vibrational energy in the C=O stretching mode (amide-I)
of a polypeptidic chain. Following Davydov [2], one can
take into account the coupling between the amide-I vibra-
tional quantum exciton and the acoustic phonon (molec-
ular displacements) in the lattice. This non linear interac-
tion leads to a self-trapped state of the vibrational quanta.
The latter together with the deformational lattice can
move over a macroscopic distance along the molecular
chain retaining wave shape, energy, momentum and other
quasiparticle properties. In this way the bio-energy can be
transported as a localized “wave packet”in solitary waves.
This is the Davydov model for the bio-energy transport,
which was first proposed in the 1970s [2]. The Hamiltonian
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describing such system has the form

HD =
∑
n

[
ε0B

+
nBn − J(B+

nBn−1 +BnB
+
n+1)

]
+
∑
n

[
P 2
n

2M
+

1
2
w(un − un−1)2

]
+
∑
n

[
χ1(un+1 − un−1)B+

nBn
]

= Hex +Hph +Hint (1)

where ε0 = 0.205 eV is the amide-I quantum energy, −J
is the dipole-dipole interaction energy between neighbour-
ing sites, B+

n (Bn) is the creation (annihilation) operator
for an amide-I quantum excitation (exciton) in the site n,
un is the displacement operator of lattice oscillator at site
n, Pn is its conjugate momentum operator, M is the mass
of an amino acid molecule, w is the elasticity constant of
the protein molecular chains, and χ1 is an nonlinear cou-
pling parameter related to the interaction of the exciton-
phonon. The wave function proposed by Davydov is

|D2(t)〉 = |ϕD(t)〉1β(t)〉 =∑
n

ϕn(t)B+
n exp

(
− i
~
∑
n

[βn(t)Pn − πn(t)un]

)
|0〉 (2)
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or

|D1(t)〉 =∑
n

{
ϕn(t)B+

n exp

(∑
q

[
αnq(t)a+

q − α∗nq(t)an
])}

|0〉

where |0〉 = |0〉ex|0〉ph, |0〉ex and |0〉ph are the ground
states of the exciton and phonon, respectively, aq(a+

q )
is annihilation (creation) operator of the phonon with
ware vector q, ϕn(t) and βn(t) = 〈Φ|un|Φ〉 and πn(t) =
〈Φ|Pn|Φ〉 and αnq(t) = 〈D1(t)|aq|D1(t)〉 are some unde-
termined functions of time.

Obviously, |ϕD(t)〉 =
∑
n ϕn(t)B+

n |0〉ex in equation (2)
is an eigenstate of the number operator, N̂ =

∑
nB

+
nBn,

corresponding to a single excitation, i.e., N̂ |ϕD(t)〉 =
|ϕD(t)〉.

The Davydov soliton obtained from equations (1)
and (2) in the semiclassical limit and using the contin-
uum approximation has the from

ϕD(x, t) =
(µD

2

)1/2

sech
[
µD

r0
(x− x0 − vt)

]
× exp

{
i
[
~v

2Jr2
0

(x− x0)−Evt/~)
]}

(3)

corresponding to an excitation localized over a scale
r0/µD, where µD = χ2

1/((1− s2)wJ), GD = 4JµD, s
2 =

v2/v2
0, v0 = r0(w/M)1/2 is the sound speed in the pro-

tein molecular chains, v is the velocity of the soliton, r0 is
the lattice constant. Evidently, the soliton contains only
one exciton, i.e., N = 〈ϕD(t)|N̂ |ϕD(t)〉 = 1 . This shows
that the Davydov soliton is formed through self-trapping
of one exciton with binding energy EBD, where

EBD =
−χ4

1

3Jw2
· (4)

The above idea about the soliton mechanism of bio-
energy transport in protein molecules has been subject
of a large body of work [3–23]. A lot of issues related
to the Davydov model, including the foundation and ac-
curacy of the theory, the quantum and classical prop-
erties and the thermal stability and lifetimes of the
Davydov soliton have extensively been studied by many
scientists [3–23]. However, considerable controversy has
arisen in recent years concerning whether the Davy-
dov soliton is sufficiently stable in the region of bi-
ological temperature to provide a viable explanation
for bio-energy transport. It is out of question that
the quantum fluctuations and thermal perturbations
are expected to cause the Davydov soliton to de-
cay into a delocalized state. Some numerical simula-
tions indicated that the Davydov soliton is not sta-
ble at the biological temperature 300 K [12–14,23].
Other simulations showed that the Davydov soliton is
stable at 300 K [7–10], but they were based on classical
equations of motion which are likely to yield unreliable
estimates for the stability of the soliton [3]. The simu-
lations based on the |D2〉 state generally show that the

stability of the soliton decreases with increasing temper-
atures and that the soliton is not sufficiently stable in
the region of biological temperature. Since the dynamical
equations used in the simulations are not equivalent to
the Schrödinger equation, the stability of the soliton ob-
tained by these numerical simulations is not reliable. The
simulation [9] based on the |D1〉 state with the thermal
treatment of Davydov [8] yields the wondering result that
the stability of the soliton increases with increasing tem-
perature, predicting that |D1〉-type soliton is stable in the
region of biological temperature. Evidently, the conclusion
is doubtful because the Davydov procedure does not use
a density matrix which is the correct method. Therefore,
there exists no exact quantum mechanical treatment for
the numerical simulation of the Davydov soliton. How-
ever, for the thermal equilibrium of the Davydov soliton
one can use quantum Monte Carlo simulation [13]. In the
simulation, correlations characteristic of solitonlike quasi-
particles occur only at low temperature about T < 10 K
for the widely accepted parameter values. This is consis-
tent at a qualitative level with the Cottingham et al.’s re-
sult [14], arising from a quantum-mechanical perturbation
calculation. The lifetime of the Davydov soliton computed
by using this method is too small (about 10−12–10−13s)
to be useful in biological processes. This shows clearly
that the Davydov solution is not a true wave function
of the system. However, a thorough study in terms of pa-
rameter values, different types of disorder, different ther-
malization schemes, different wave functions and different
associated dynamics leads to a very complicated picture
for the Davydov model [10–12]. The results do not com-
pletely rule out the Davydov theory. Indeed it is possible
that using another wave function and a more sophisticated
Hamiltonian we can find a soliton with good thermal sta-
bility and a suitably long lifetime. As a matter of fact,
Takeno’s [22] and Pang’s [23] studies show that consider-
ing different couplings between the relevant modes in the
vibronic Hamiltonian can enhance the binding energy and
stability of the soliton. On the other hand, some scientists
thought that the soliton with multiquanta state (n ≥ 2),
e.g., Brown et al.’s coherent state [4], Kerr et al.’s [12]
and Schweitzer et al.’ s [14] multiquanta state, Cruzeiro-
Hansson’s [10] and Förner’s [21] two-quanta state, would
be thermally stable in the region of biological tempera-
ture, and could provide a realistic mechanism for the bio-
energy transport in protein molecules. However, the stan-
dard coherent state is unsuitable for the biological protein
molecules because the number of particles in this state
is innumerable, violating the conservation of the number
of particles of the systems. The assumption of a multi-
quanta state (n > 2) is also at odds with the fact that the
energy released in the ATP hydrolysis (about 0.43 eV)
can only excite two quanta of amide-I vibration. The nu-
merical study of a two-quanta model by Förner [21] re-
veals remarkable differences from one-quantum dynam-
ics, i.e., the soliton with two-quanta is more stable than
that with one-quantum. Cruzeiro-Hansson reconstructed
a two-quanta state of the semiclassical Davydov system,
and also showed that the resulting soliton is thermally
more stable than the one-quantum state [10]. However,
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we proved [24] that the Hansson’s ansatz contains exactly
four quanta, instead of two quanta, which is impossible be-
cause the energy released in ATP hydrolysis can only ex-
cite two quanta. Therefore, Hansson’s improvement is still
not successful and the exact wave function of the model
remains unknown.

On the basis of the work of Cruzeio-Hansson, Förner,
Schweitzer and Takeno and Pang, we have improved both
the Hamiltonian and the wave function of the model [24].
A new coupling interaction between the acoustic and
amide-I vibrational modes was added to the original Davy-
dov’s Hamiltonian which takes into account relative dis-
placement of the neighbouring peptide groups resulting
from dipole-dipole interaction of the neighbouring amide-
1 vibrational quanta. We also replaced the Davydov’s
wave function with a quasi-coherent two-quanta state
for exhibiting the coherent behaviors of collective exci-
tations [25,26] which are a feature of the energy released
in ATP hydrolysis in the systems. The equation of motion
and the properties of the new soliton in the new model are
different from that in the Davydov model and as a result
the soliton lifetime and stability are greatly enhanced. We
suggest that this model can resolve the controversy on the
thermal stability and lifetime of the soliton excited in the
protein molecules. In the previous paper we studied only
the quantum properties of the new soliton [24], but here
we are more interested in the problem of its lifetime and
thermal stability at biological temperature 300 K. In the
present paper we shall calculate in detail the lifetime of
the new soliton at 300 K by using the generally accepted
values of the parameters appropriate to the α-helical pro-
tein molecules in terms of the quantum perturbation the-
ory developed by Cottingham et al. [14], which can take
simultaneously into account the quantum and thermal ef-
fects. We will see that the lifetime of the new soliton at
300 K is long enough to provide a viable explanation of
the bio-energy transport in the proteins. The plan of this
paper is as follows. In Section 2 and Section 3 we shall de-
scribe the new model, the properties of the new soliton and
the partially diagonalized form of the model-Hamiltonian.
In Section 4 we shall compute the transition probability
from soliton state to the delocalized state and the lifetime
of the new soliton by using quantum-mechanical pertur-
bation methods. The detailed discussion of the properties
and changes of the lifetimes of the soliton for a large range
of parameter values is presented in Section 5. The conclu-
sions of this investigation are also given in this section.

2 New model and the properties
of the new soliton

The question of the lifetime of the soliton in the protein
molecules is twofold. In the Langevin dynamics unpre-
dictable effects arise from the semiclassical approximation.
In the quantum treatment there is the problem that an
exact wave function is lacking. In the Davydov model in
equations (1–4), both the wave function and the Hamilto-
nian of the systems, is too simple. A first problem of the

model concerns the Davydov wave functions, both |D1〉
and |D2〉. These are asymmetric since the phononic part
is a coherent state, while, the excitonic part is an excita-
tion state of a single-particle. It is not reasonable that the
nonlinear interaction generated by the coupling between
the excitons and phonons produces different states for
the phonon and the exciton. Thus, the Davydov’s wave-
function should be modified [23], i.e., the excitonic part in
it should also be coherent or quasi-coherent [25,26]. How-
ever, the standard coherent state [4] and large – n exci-
tation state are not appropriate to the protein molecules
due to the reasons mentioned above. Similarly, Förner’s
and Cruzeiro-Hansson’s two-quanta states do not fulfill
the above criteria.

In view of the above discussion, we propose the follow-
ing wave function for the system [24]

|Φ(t)〉 = |ϕ(t)〉|β(t)〉 = U1|0〉exU2|0〉ph, (5)

where

U1 =
1
λ

1 +
∑
n

ϕn(t)B+
n +

1
2!

(∑
n

ϕn(t)B+
n

)2
 ,

(5a)

U2 = exp

{
− i
~
∑
n

[βn(t)Pn − πn(t)un]

}
(5b)

= exp

{
1√
N

∑
q

αq(t)a+
q − α∗q(t)aq

}
(5c)

where aq(a+
q ) is annihilation (creation) operator of the

phonon with wavevector q in the lattice, the meaning
of Bn(B+

n ) is the same as that in equation (1). The
ϕn(t), αq(t) = 〈Φ|aq|Φ〉 and βn(t) = 〈Φ|un|Φ〉 and πn(t) =
〈Φ|Pn|Φ〉 are four sets of unknown functions, λ is a nor-
malization constant, we assume in follows that λ = 1 for
convenience of calculation, except when explicitly men-
tioned. N is total number of the amino acids in the protein
molecular chain.

The present wave function of the exciton in equa-
tion (5a) is not an excitation state of single-particle, but
a coherent state, accurately speaking, a quasi-coherent
state. To see this point we can represent it by

|ϕ(t)〉 =
1
λ

1 +
∑
n

ϕn(t)B+
n +

1
2!

(∑
n

ϕn(t)B+
n

)2
 |0〉ex

∼ 1
λ

exp

{∑
n

ϕn(t)B+
n

}
|0〉ex

=
1
λ

exp

{∑
n

[ϕn(t)B+
n − ϕ∗nBn]

}
|0〉ex. (6)

The last representation in equation (6) is a standard co-
herent state. However, the new wave function retains only
three terms of a standard coherent state, which math-
ematically is justified for the case of small ϕn(t) (i.e.,
|ϕn(t)| � 1). Therefore we call |ϕ(t)〉 a quasi-coherent



300 The European Physical Journal B

state. Obviously, it is not an eigenstate of the number op-
erator N̂ =

∑
nB

+
nBn, since

N̂ |ϕ(t)〉 =
∑
n

B+
nBn|ϕ(t)〉

= 2|ϕ(t)〉 −
(

2 +
∑
n

ϕn(t)B+
n

)
|0〉ex · (7)

Therefore, the |ϕ(t)〉 represents a superposition of multi-
quanta states. More precisely, it is a coherent superposi-
tion of the excitonic state with two quanta and the ground
state of exciton. The average number of excitons for this
state is

N = 〈ϕ(t)|N̂ |ϕ(t)〉

=

[∑
n

|ϕn|2 +

(∑
n

|ϕn|2
)(∑

m

|ϕm|2
)]

=

(∑
n

|ϕn|2
)(

1 +
∑
m

|ϕm|2
)

= 2 (8)

where we utilize the relations [24]

ex〈0|B+
n |0〉ex = ex〈0|B+

nBn|0〉ex = ex〈0|B+
nBm|0〉ex

= ex〈0|B+
nBmBl|0〉ex = ex〈0|B+

nBmB
+
l Bn|0〉ex

= ex〈0|B+
nBmB

+
i BlBj |0〉ex

= ex〈0|B+
nBmB

+
l BiBjBn|0〉ex.... = 0 (9)

∑
n

|ϕn|2 = 1,
∑
m

|ϕm|2 = 1. (10)

Next, another problem arises for the Davydov’s Hamil-
tonian [24]. The Davydov Hamiltonian takes into account
the resonant dipole-dipole interaction of the neighbour-
ing amide-I vibrational quanta in neighbouring peptide
groups, but fails to consider the changes of relative dis-
placement of the neighbouring peptide groups arising from
this interaction. Hence it is very reasonable to add the new
interaction term, χ2

∑
n(un+1−un)(B+

n+1Bn+B+
mBn+1),

to the Davydov’s Hamiltonian for representing correla-
tions of the collective excitations and collective motions
in the protein molecules as mentioned above [22,23]. Al-
though the dipole-dipole interaction is small as compared
with the energy of the amide-I vibrational quantum, the
resulting change of relative displacement of neighbouring
peptide groups resulting from this interaction cannot be
ignored. This is due to the sensitive dependence of the
dipole-dipole interaction with the distance (separation)
in protein molecules. The electromagnetic interaction be-
tween the neighbouring peptide groups that can allow the
peptide groups to change positions with relative ease. This
is a feature of soft condensed matter and bio-self- orga-
nization. Thus, we replace the Davydov’s Hamiltonian,

equation (1), by [24]

H = Hex +Hph +Hint

=
∑
n

[
ε0B

+
nBn − J (B+

nBn+1 +BnB
+
n+1)

]
+
∑
n

[
P 2
n

2M
+

1
2
w(un − un−1)2

]
+
∑
n

[
χ1(un+1 − un−1)B+

nBn + χ2(un+1 − un)

×(B+
n+1Bn +B+

nBn+1)
]
. (11)

The linear coupling constants are χ1 and χ2, and the new
coupling constant χ2 arises from the modulation of res-
onant dipole-dipole interaction energy of the excitons by
the molecular displacements, i.e., χ2 represents the change
of the resonant dipole-dipole interaction resulting from
unit extension of the molecular chain. The meanings of
other physical quantities in equation (11) was explained
in equations (1, 2).

Quite evidently, both the Hamiltonian and wave func-
tion of the system shown in equations (5) and (11) are
different from the Davydov’s model in equations (1, 2).
For the Hamiltonian we add the new interaction term,∑
n χ2(un+1 − un)× (B+

n+1Bn +B+
nBn+1), into the orig-

inally Davydov’s Hamiltonian, equation (1). Thus the
Hamiltonian, now, has better symmetry for the interac-
tions, and can also represent the features of mutual cor-
relations of the collective excitations and collective mo-
tions in the protein molecules. The new wave function is
a quasi-coherent state. The new state contains only two
excitons, which come from the second and third terms in
equation (5a). Each term contributes only one quantum,
but it is not an excitation state of two particles. Hence,
as far as the form and meanings of the new wave function
are concerned, it is not either Förner’s [11] and Cruzeiro-
Hansson’s [10] two-quanta states and Kerr et al.’s [12]
multiquanta state, or Brown et al.’s [4] standard coherent
state and Schweitzer, et al.’s multiquanta state defined by
relation

∑
i |ϕi|2 = n. The wave function, equation (5),

does not only exhibit coherent properties, but also agrees
with the fact that the energy released in the ATP hy-
drolysis (about 0.43 eV) excites only two amide-I vibra-
tional quanta, instead of multiquanta (n > 2). Therefore,
the Hamiltonian and wave function of the systems, equa-
tions (5, 6), are reasonable and appropriate to the protein
molecules.

Using the standard transformation:

u =
∑
q

[
~

2NMωq

]1/2

eiqnr0(a+
−q + aq),

Pn = i
∑
q

[
M~ωq

2N

]1/2

eiqnr0(a+
−q − aq) (12)
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where ωq = 2(w/M)1/2 sin(r0q/2), equation (1) becomes

H =
∑
n

[
ε0B

+
nBn − J(B+

nBn+1 +B+
n+1Bn)

]
+
∑
q

~ωq
(
a+
q aq +

1
2

)
+

1√
N

∑
qn

[g1(q)B+
nBn

+ g2(q)(B+
nBn+1 +B+

nBn+1)](aq + a+
−q)e

inr0q (13)

where

g1(q) = 2χ1i
[

~
2Mωq

]1/2

sin r0q;

g2(q) = χ2

[
~

2Mωq

]1/2

(eir0q − 1). (14)

In a semiclassical and continuum approximations, from
equation (13) we can obtain the envelope soliton solution
in the new model, the calculation of which is described in
Appendix A. The soliton is of the form [2,27,28]

ϕ(x, t) =
(µp

2

)1/2

sech
[
µp

r0
(x− vt)

]
× exp

[
i
~

(
~2vx

2Jr2
0

−Esolt

)]
(15)

where

µp =
2(χ1 + χ2)2

w(1− s2)J
· (16)

The energy of the new soliton is

ES01 = 2

[
(ε0 − 2J) +

~2v2

4Jr2
0

−
2µ2

p

3
J

]
· (17)

Thus we can also find out that

αq(t) =
iπ(χ1 + χ2)

wµp(1− v2/v2
0)

[
M

2~ωq

]1/2

× (ωq + qv)csch(πqr0/2µp)eiqvt = αqeiqvt. (18)

This treatment yields a localized coherent structure with
size of order 2πr0/µp that propagates with velocity v and
can transfer energy ES01 < 2ε0. Unlike bare excitons that
are scattered by the interactions with the phonons, this
soliton state describes a quasi-particle consisting of the
two excitons plus a lattice deformation and hence a pri-
ori includes interaction with the acoustic phonons. So the
soliton is not scattered and spread by this interaction, and
can maintain its form, energy, momentum and other quasi-
particle properties moving over a macroscopic distance.
The bell-shaped form of the soliton (15) does not depend
on the excitation method. It is self-consistent. Since the
soliton always move with velocity less than that of lon-
gitudinal sound in the chain they do not emit phonons,
i.e., their kinetic energy is not transformed into thermal
energy. This is one important reason for the high stability

of the new soliton. In addition the energy of the soliton
state is below the bottom of the bare exciton bands, the
energy gap being 4µ2

pJ/3 for small velocity of propaga-
tion. Hence there is an energy penalty associated with the
destruction with transformation from the soliton state to
a bare exciton state, i.e., the destruction of the soliton
state requires simultaneous removal of the lattice distor-
tion. We know in general that the transition probability to
a lattice state without distortion is very small, in general,
being negligible for a long chain. Considering this it is rea-
sonable to assume that such a soliton is stable enough to
propagate through the length of a typical protein struc-
ture. However, the thermal stability of the soliton state
must be calculated quantitatively. The following calcula-
tion addresses this point explicitly.

One can sum up the differences between our
model and the Davydov model, equations (1–4),
as follows. Firstly the parameter µp is increased(
µp = 2µD

[
1 + 2(χ2

χ1
) + (χ2

χ1
)2
])

. Secondly the non-linear

coupling energy becomes Gp = 8(χ1+χ2)2

w(1−s2) (Gp = 2GD

×
[
1 + 2(χ2

χ1
) + (χ2

χ1
)2
])

, where GD = 4χ2
1

w(1−s2) is the non-
linear interaction in the Davydov model) resulting from
the two-quanta nature and the enhancement of the cou-
pling the coefficient (χ1 + χ2). In fact, the non-linear in-
teraction, Gp, is increased by about a factor of 3 over
that of the Davydov soliton and is larger than the disper-
sion energy J in the equation of motion, equation (A4).
A straightforward consequence of these effect is that the
binding energy of the new soliton or, in other words, the
energy gap between the solitonic and excitonic states are
greatly increased or

EBP = −4µ2
pJ/3 = −G2

p/12J = 16EBD

×
[

1 + 4
(
χ2

χ1

)
+ 6

(
χ2

χ1

)2

+ 4
(
χ2

χ1

)3

+
(
χ2

χ1

)4
]

(19)

where EBD is given in equation (4).
We will now evaluate the main parameters of the new

model using generally accepted values of physical param-
eters appropriate to α-helical protein molecules. The pa-
rameter values used in the calculation are listed below

J = 1.55× 10−22 J, w = (13−19.5) N/m,

M = (1.17−1.91)× 10−25 kg, χ1 = 62× 10−12 N

χ2 = (10−18)× 10−12 N r0 = 4.5× 10−10 m. (20)

Note χ2 was roughly estimated by referring Takeno et al.’s
papers [22,23]. We can calculate the values of the main
parameters in this model by above values. These values
and the corresponding values in the Davydov model are
simultaneously listed in Table 1.

From Table 1 we can see clearly that the new model
produces considerable changes in the properties of the new
soliton, for example, large increase of the non-linear inter-
action, binding energy and amplitude of the soliton, and
decrease of its width as compared to that of the Davydov
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Table 1. Comparison of parameters used in the Davydov model and our new model.
XXXXXXXXXXXXModels

Parameters
µ

G

(×10−21J)

Amplitude

of soliton A’

Width of soliton

∆X(×10−10m)

Binding energy

of soliton EB (×10−21J)

Our model 5.94 3.8 1.72 4.95 −7.8

Davydov model 1.90 1.18 0.974 14.88 −0.188

soliton. This shows that the soliton in the new model
is more localized and more robust against quantum and
thermal fluctuations and has enhanced stability [2,27,28]
which implies an increase in lifetime for the new soliton.
From equation (19) we also find that the effect of the two-
quanta nature is larger than that of the added interac-
tion. We can therefore refer to the new soliton as quasi-
coherent.

In the above studies, in order to investigate the in-
fluences of quantum and thermal effects on soliton state,
which are expected to cause the soliton to decay into de-
localized states, we postulate that the model Hamiltonian
and the wavefunction in the new model together give a
complete and realistic picture of the interaction proper-
ties and allowed states of the protein molecules. The ad-
ditional interaction term in the Hamiltonian gives better
symmetry of interactions. The new wavefunction is a rea-
sonable choice for the protein molecules because it not
only can exhibit the coherent features of collective exci-
tations arising from the nonlinear interaction between the
excitons and phonons, but also retain the conservation of
number of particles and fulfil the fact that the energy re-
leased by the ATP hydrolysis can only excite two quanta.
In such a case, using a standard calculating method [2,26]
and widely accepted parameters we can calculate the re-
gion encompassed of the excitation or the linear extent of
the new soliton, ∆X = 2πr0/µp, to be greater than the
lattice constant r0 i.e., ∆X > r0 as shown in Table 1. Con-
versely we can explicitly calculate the amplitude squared
of the new soliton using equation (15) in its rest frame
as |ϕ(X)|2 = µp/2sech2(µpX/r0). Thus the probability to
find the new soliton outside a range of width r0 is about
0.10. This number can be compatible with the continuous
approximation since the quasi-coherent soliton can spread
over more than one lattice spacing in the system in such a
case. This proves that assuming the continuous approxi-
mation used in the calculation is still qualitatively valid for
soliton widths of the order of the lattice spacing, soliton
stability is still improved. There may however be consid-
erable corrections to the quantitative values.

3 Partially diagonalized form of the model
Hamiltonian

We now diagonalize partially the model Hamiltonian in or-
der to calculate the lifetime of the soliton, equation (15),
using the quantum perturbation method [14]. Since one is
interested in investigating the case where there is initially
a soliton moving with a velocity v on the chains, it is con-
venient to do the analysis in a frame of reference where

the soliton is at rest. We should then consider the Hamil-
tonian in this rest frame of the soliton, H − vP , where P
is the total momentum, and P =

∑
q ~q(a+

q aq − B+
q Bq),

where B+
q = 1√

N

∑
n eiqnr0B+

n . Also, in order to have sim-
ple analytical expressions we make the usual continuum
approximation. This gives

H̃ =
∫ L

0

dx2
[
(ε0 − 2J)ϕ+(x)ϕ(x) + Jr2

0

∂ϕ+

∂x

∂ϕ

∂x
− i~v

2

×
(
∂φ+

∂x
ϕ(x)− ϕ+(x)

∂ϕ

∂x

)]
+
∑
q

~(ωq − qv)a+
q aq

+
1√
N

∑
q

2[g1(q) + 2g2(q)](a+
−q + aq)

×
∫ L

0

dxeikxϕ+(x)ϕ(x) (21)

where ϕ(x) represents now the field operator correspond-
ing toBn in the continuum limit (whereas before it only in-
dicated a numerical value). Here L = Nr0, −π < kr0 < π,
and ωq ≈ (w/M)1/2r0|q|, x = nr0. Since the soliton ex-
citation is connected with the deformation of intermolec-
ular spacing, it is necessary to pass in equation (21) to
new phonons taking this deformation into account. Such
a transformation can be realized by means of the following
transformation of phonon operators [29]

bq = ap −
1√
N
αq, b+q = a+

q −
1√
N
α∗q , (22)

which describe phonons relative to a chain with a partic-
ular deformation, where bq(b+q ) is the annihilation (cre-
ation) operator of new phonon. The vacuum state for the
new phonons is

|0̃〉ph = exp

[
1√
N

∑
q

(αq(t)a+
q − α∗q(t))aq

]
|0〉ph (23)

which is a coherent phonon state [30], i.e., bq|0̃〉ph = 0.
The Hamiltonian H̃ can now be rewritten as

H̃ =
∫ L

0

2dxϕ(x)
[
ε0 − 2J + V (x)− Jr2

0

∂

∂x2
+ i~

∂

∂x

]
× ϕ(x) +

∑
q

~(ωq − qv)[b+q bq +
1√
N

(αqb+q + α∗qb
+
q )]

+ w +
1√
N

∑
q

2[g1(q) + 2g2(q)](b+−q + bq)

×
∫ L

0

dxeiqxϕ+(x)ϕ(x) (24)
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where

W =
1
N

∑
q

~(ωq − qv)|αq|2, V (x)

=
1
N

∑
q

[g1(q) + 2g2(q)](α∗−q + α−q)eiqx. (25)

To describe the deformation corresponding to a soliton in
the subspace where there is

∫ L
0 dxϕ+(x)ϕ(x) = 1 from

equation (11) in such a case. From the above formulae we
can obtain

V (x) = −2Jµ2
p sech2(µpx/r0). (26)

In order to partially diagonalize the Hamiltonian equa-
tion (24) we introduce the following canonical transfor-
mation [14,23]

ϕ(x) =
∑
j

AjCj(x), ϕ+(x) =
∑
j

C∗j (x)A+
j (27)

where∫
C∗1 (x)Cj(x)dx = δlj ,

∑
j

C∗j (x′)Cj(x)

= δ(x− x′),
∫

dx|Cj(x)|2 = 1. (28)

The operators A+
s and A+

k are the creation operators
for the bound states Cs(x) and delocalized state Ck(x),
respectively. The detailed calculation of the partial
diagonalization and of corresponding Cs(x) and Ck(x)
are described in Appendix B. The partially diagonalized
Hamiltonian obtained is as follows

H̃ = W +EsA
+
s As +

∑
k

EkA
+
k Ak +

∑
q

~(ωq − qv)b+q bq

+
1√
N

∑
q

~(ωq − qv)(b+q αq + α∗qbq)(1−A+
s As)

+
1√
N

∑
kk′q

F (k, k′, q)(b+−q + bq)A+
k′Ak

− 1√
N

∑
kq

F̃ (k, q)(b+−q + bq)(A+
s A−k −A+

k As) (29)

and

Cs(x) =
(
µp

2r0

)1/2

sech(µpx/r0) exp[i~xv/2Jr2
0],

with

Es = 2
[
ε0 − 2J − ~

2V 2

2Jr2
0

− µpJ

]
(30a)

Ck(x) =
µp tanh(µpx/r0)− ikr0√

Nr0[µp − ikr0]
exp

[
ikx+

i~vx
2Jr2

0

]
,

with Ek = 2
[
ε0 − 2J − ~

2V 2

2Jr2
0

− J(kr0)2

]
(30b)

where

F (k, k′, q) = 2[g1(q) + 2g2(q)]
∫ L

0

dxeiqxC∗k′(x)Ck(x)

≈ 2[g1(q) + 2g2(q)]
{

1− iµpqr0
[µp + i(k + q)r0][µp − ikr0]

}
≈ F [k, (k + q), q]δk′k+q

(31)

F̃ (k, q) = 2[g1(q) + 2g2(q)]
∫ L

0

dxeiqxC∗k′(x)Cs(x)

=
2π√
2µp

[g1(q) + 2g2(q)]
{

iqr0
[µp + ikr0]

}
× sech[π(k − q)r0/2µp] (32)

where αq is determined by V (x) and the condition,
(ωq − vq)αq = (ωq + qv)α∗q , which is required to get the
factor, (1−A+

s As), in the H̃ in equation (29). Thus we find

αq =
iπ(χ1 + χ2)
wµp(1− s2)

[
M

2~ωq

]1/2

(ωq + qv)csch(πqr0/2µp)

(33)

and W =
2
3
µ2

pJ .

For this αq the |0̃〉ph in equation (23) is just the
coherent phonon state introduced by Davydov. However,
the bound state Cs(x) in equation (30a), unlike the un-
bounded state Ck(x) in equation (30b), is self-consistent
with the deformation. Such a self-consistent state of
the intramolecular excitation and deformation forms a
soliton which in the intrinsic reference frame is station-
ary. For the new soliton described by the state vector

|ψ〉 =
1√
2!

(A+
s )2|0〉ex|0̃〉ph the average energy of H̃ in

equation (29) is

〈ψ|H̃|ψ〉 = 2(ε0 − 2J − ~
2v2

4Jr2
0

)− 4
3
Jµ2

p. (34)

Evidently, the average energy of H̃ in the soliton state
|ψ〉, equation (34), is just equal to the above soliton energy
Esol, or the sum of the energy of the bound state in equa-
tion (30a), Es, and the deformation energy of the lattice,
W , i.e., 〈ψ|H̃|ψ〉 = Esol = Es +W . This is an interesting
result, which shows clearly that the quasi-coherent soliton
formed by this mechanism is just a self-trapping state of
the two excitons plus the corresponding deformation of
the lattice. However, it should be noted that |ψ〉 is not an
exact eigenstate of H̃ owing to the presence of the terms
in H̃ with A+

k As and A+
s A−k.
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4 Transition probability and decay rate
of the new soliton

We now calculate the transition probability and decay
rate of the quasi-coherent soliton arising from the per-
turbed potential by using the first-order quantum per-
turbation theory developed by Cottingham et al. [14], in
which the influences of the thermal and quantum effects
on the properties of the soliton can be taken into account
simultaneously.

For the discussion of the decay rate and lifetime of
the new soliton state it is very convenient to divide H̃ in
equation (29) into H0 + V1 + V2, where

H0 = W +EsA
+
s As +

∑
k

EkA
+
k Ak +

∑
q

~(ωq − vq)b+q bq

+
1√
N

∑
q

~(ωq − vq)(αqb+q + α∗qbq)(1−A+
s As)

(35)

V1 =
1√
N

∑
kk′q

F (k, k + q, q)(b+−q + bq)A+
k′Ak (36)

V2 =
1
N

∑
kq

F̃ (k, q)(b+−q + bq)(A+
s Ak −A+

s A−k),

V = V1 + V2. (37)

H0 describes the relevant quasi-particle excitations in
the protein. This is a soliton together with phonons rel-
ative to the distorted lattice. The resulting delocalized
excitations belongs to an exciton-like band with phonons
relative to a uniform lattice. The bottom of the band of
the latter is at the energy 4Jµ2

p/3 relative to the soliton, in
which the topological stability associated with removing
the lattice distortion is included.

We now calculate the decay rate of the new soliton
along the following lines by using equation (35) and
V2 in equation (37) and quantum perturbation theory.
Firstly, we compute a more general formula for the decay
rate of the soliton containing n quanta in the system
in which the three terms contained in equation (5a) is
replaced by (n+ 1) terms of the expression of a coherent
state 1

λexp [
∑
n ϕn(t)B+

n ] |0〉ex. Finally we find out the
decay rate of the new soliton with two-quanta. In such a
case H0 is chosen such the ground state, |n〉 has energy
W + nE′s in the subspace of excitation number equal to
n, i.e., 〈n|

∑
iB

+
i Bi|n〉 = 〈n|(A+

s As +
∑
kA

+
k Ak)|n〉 = n.

In this subspace the eigenstates have the simple form

|n−m, k1K2 . . . km, {nq}〉 =
1√

(n−m)!
(A+

s )n−m

×A+
k1
A+
k2
. . . A+

km
|0〉ex

∏
q

(d+
q )nq√
nq!
|0̃〉n−mph (38)

where

dq = bq +
m

n

1√
N
αq = aq −

n−m
n

1√
N
αq

(m ≤ n, n and m are all integers) (39)

with dq|0̃〉n−mph = 0. The corresponding energy of the sys-
tems is

E
(0)
n−m;k1...km1 ;{nq} = (1− (m/n)2)W + (n−m)E′s

+
m∑
j=1

E′k1
+
∑
q

~(ωq − vq)nq (40)

E′s is the energy of a bound state with one exciton,
E′k is the energy of the unbound (delocalized) state
with one exciton. When m = 0 the excitation state
is a n-type soliton plus phonons relative to the chain
with the deformation corresponding to the n-type
soliton. For m = n the excited states are delocalized
and the phonons are relative to a chain without any
deformation. Furthermore except for small k, the de-
localized states approximate ordinary excitons. Thus
the decay of the soliton is just a transition from the
initial state with the n-type soliton plus the new phonons:

|n〉 =
1√
n!

∏
q

(b+q )nq

(nq!)1/2
(A+

s )n|0〉ex|0̃〉ph (41)

with corresponding energy Es{nq} = W + nE′s +∑
q ~(ωq − vq)nq to the final state with delocalized

excitons and the original phonons:

|αk〉 =
∏
q

(a+
q )nq√
nq!
|0〉ph (A+

k )n|0〉ex (42)

with corresponding energy Ek{nq} = nE′k +
∑
q ~(ωq −

vq)nq caused by the part, V2, in the perturbation inter-
action V . In this case, the initial phonon distribution will
be taken to be at thermal equilibrium. The probability of
the above transitions in lowest order perturbation theory
is given by

W̄ =
1
~2

∫ t

0

dt′
∫ t

0

dt′′
{∑
αk′

∑
1

P
(ph)
1 〈n| exp

(
iH0t

′′

~

)
V2

× exp
(
−iH0t

′′

~

)
|αk′〉〈αk′| exp

(
iH0t

′

~

)
V2

× exp
(
−iH0t

′

h

)
|n〉
}
· (43)

We should calculate the transition probability of the
soliton resulting from the perturbed potential, (V1 +
V2), at first-order in perturbation theory. Following
Cottingham and Schweitzer [14], we estimate only the
transition from the soliton state to delocalized exciton
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Γn = lim
t→∞

dW

dt
=

4

~

�
π2

2nµ1N2

� X
kk′k′′

[g∗1(k) + 2g∗2(k)][g1(k′′) + 2g2(k′′)]
(kr0)(k′′r0)

(nµ1)2 + (k′r0)2
sech

�
πr0

2nµ1
(k − k′)

�

× sech

�
πr0

2nµ1
(k′′ − k′)

�
Re

(Z ∞
0

dt exp

�
− i

~

�
n

�
n2 − 2

3
n

�
µ2

1J + nJ(k′r0)2

�
t

�
〈〈exp

"
i
X
q

(ωq − qv)b+q bqt

#
(b+k + b−k)

× exp

"
−i
X
q

(ωq − qv)a+
q aqt

#
(b+−k′′ + bk′′)〉〉

)
=

4

~2

π2

2nµ1N2

X
kk′k′′

(
[g∗1(k) + 2g∗2(k)][g1(k′′) + 2g2(k′′)]

(kr0)(k′′r0)

(nµ1)2 + (k′r0)2

× sech

�
πr0(k − k′)

2nµ1

�
sech

�
πr0

2nµ1
(k′′ − k′)

�
Re

Z ∞
0

dtU(k, k′′t) exp

�
− i

~

�
n

�
n2 − 2

3
n

�
µ2

1J + nJ(k′r0)2

�
t

�)
(46)

states caused by the potential V2, which can satisfacto-
rily be treated by means of perturbation theory since the
coefficient F̃ (k, q) defined by equation (32) is proportional
to an integral over the product of the localized state, and
a delocalized state, and therefore is of order 1/

√
N . The

V1 term in the Hamiltonian is an interaction between the
delocalized excitons and the phonons. The main effect of
V1 is to modify the spectrum of the delocalized excitons in
the weak coupling limit (Jµp/KBT0 � 1), the definition
of T0 is given below). As a result the delocalized excitons
and phonons will have their energies shifted and also have
finite lifetimes. These effects are ignored in our calculation
since they are only of second order in V1.

The sum over l in equation (43) indicates a sum over
an initial set of occupation numbers for phonons relative
to the distorted lattice with probability distribution P ph

l ,
which is taken to be the thermal equilibrium distribution
for a given temperature T . Since

e−iH0t|n, {nq}〉 = exp
{
− i(W + nE′q)t/~− i

×
∑
q

(ωq − qv)b+q bqt
}
|n, {nq}〉

and

eiH0t|n− 1, {n′q}〉 =

exp
{
−i
[(

1− 1
n2

)
W + (n− 1)E′s +E′k

]
t/~

−i
∑
q

(ωq − qv)d+
q dqt

}
|n− 1, {n′q}〉

where dq = bq + 1
n

1√
N
αq, using the explicit form for V2

and the fact that the sum over states |k′α, {n′q}〉 contains
a complete set of phonons for each values of k′, one can

rewrite W as

W =
1
~2

π2

2nµ1N2

∑
k

∑
k′

∑
k′′

[g∗1(k) + 2g∗2(k)][g1(k′′)

+ 2g2(k′′)]
(kr0)(k′′r0)

(nµ1)2 + (k′r0)2
sech

[
πr0

2nµ1
(k − k′)

]
× sech

[
πr0

2nµ1
(k′′ − k′)

] ∫ t

0

dt′
∫ t

0

dt′′

×
{

exp
[
−i
~

(
n

(
n2 − 2

3
n

)
µ2

1J + nJ(k′r0)2

)

×(t′ − t′′)] 〈〈exp

[
i
∑
q

(ωq − qv)b+q bq(t
′ − t′′)

]

× (b+k + b−k) exp

[
i
∑
q

(ωq − qv)a+
q aq(t

′ − t′′)
]

× (b+−k′′ + b−k′′)〉〉
}
· (44)

where

g1(k) + 2g2(k) = 2χ1

(
~

2Mωk

)1/2

[A(cos(r0k)− 1)

+ i(A+ 1) sin(r0k)] ≈ 2i(A+ 1)(r0k)χ1

(
~

2Mωk

)1/2

,

µ1 =
χ2

1(1 +A2)
ω(1− s2)J

, A = χ2/χ1. (45)

Here A is a new parameter introduced to describe the rate
between the new nonlinear interaction term and the one
in the Davydov’s model.

To estimate the lifetime of the soliton we are interested
in the long-time behaviour of dW

dt . By straightforward cal-
culation, the average transition probability or decay rate
of the soliton is given by

see equation (46) above
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where the thermal average is

U(k, k′′, t) = 〈〈exp

[
i
∑
q

(ωq − qv)b+q bqt

]
(b+k + b−k)

× exp

[
−i
∑
q

(ωq − qv)a+
q aqt

]
(b+−k′′ + bk′′)〉〉

with

〈〈A〉〉 = Tr

{
A exp

[
−β
∑
q

~(ωq − qv)b+q bq

]}

× Tr

{
exp

[
−β
∑
q

~(ωq − qv)b+q bq

]}

= Tr

{
A exp

[
−β
∑
q

~(ωq − qv)b+q bq

]}
/Zph (47)

and Zph =
∏
q(1− exp [−β~(ωq − qv)]

}−1
, (β = 1

KBT
).

This rather unusual expression of Γn occurs because
the phonons in the final state are related to a differ-
ent deformation. However, the analytical evaluation of
U(k, k′′, t) is a critical step in the calculation of the de-
cay rate Γn. It is well known that the trace contained in
U(k, k′′, t) can be approximately calculated by using the
occupation number states of single-particles and coherent
state.

However the former is both a very tedious calculation,
including the summation of infinite series, and also not
rigorous because the state of the excited quasiparticles is
coherent in the improved model. Here we use the coher-
ent state to calculate the U(k, k′′, t) as it is described in
Appendix C. The decay rate obtained finally is

Γn = lim
1→∞

dW
dt

=
2

nµ1~2

π2

N2

∑
kk′

[
|g1(k) + 2g2(k)|2

× (r0k)2sech2[π(k − k′)r0/2nµ1]
(nµ1)2 + (k′r0)2

Re
∫ ∞

0

dt

×
{

exp[−i(nJ(k′r0)2 + n

(
n2 − 2

3
n

)
×µ2

1Jt/~+Rn(t) + ξn(t)]
exp[i(ωk − kv)t]

exp[β~(ωk − kv)]− 1

}]
(48)

where

Rn(t) = − 1
n2N

∑
k

|αk|2 {i− exp[−i(ωk − kv)t]} ,

ξn(t) = − 4
n2N

∑
k

|αk|2 sin2

[
1
2

(ωk − kv)t
]

exp[β~(ωk − kv)]− 1
· (49)

This is just a generally analytical expression for the
decay rate of the soliton containing n quanta at any tem-
perature within lowest order perturbation theory. Note

that in the case where a phonon with wavevector k in
equation (49) is absorbed, the delocalized excitation pro-
duced does not need to have wavevector equal to k. The
wavevector here is only approximately conserved by the
sech2[π(k − k′)r0/2nµ1] term. This is, of course, a con-
sequence of the breaking of the translation symmetry by
the deformation. Consequently, we do not find the usual
energy conservation. The terms Rn(t) and ξn(t) occur be-
cause the phonons in the initial and final states are defined
relative to different deformations.

We should point out that the approximations made in
the above calculation are physically justified because the
transition and decay of the soliton is mainly determined
by the energy of the thermal phonons absorbed. Thus the
phonons with large wavevectors which fulfill wavevector
conservation make a major contribution to the transition
matrix element, while the contributions of the phonons
with small wavevector which do not fulfill wavevector con-
servation are very small, and can be neglected.

From equations (48) and (49) we see that the Γn and
Rn(t) and ξn(t) and µ = nµ1 mentioned above are all
changed by increasing the number of quanta, n. There-
fore, the approximation methods used to calculate Γn and
related quantities (especially the integral contained in Γn)
should be different for different n. We now calculate the
explicit formula of the decay rate of the new soliton with
two-quanta (n = 2) by using equations (48, 49). In such a
case we can compute explicitly the expressions of this in-
tegral and R2(t) and ξ2(t) contained in equations (48, 49)
by means of approximation. As a matter of fact, in equa-
tion (49) at n = 2 the functions R2(t) and ξ2(t) can be
exactly evaluated in terms of the digamma function and
its derivative. In the case when the soliton velocity ap-
proaches zero and the phonon frequency ωq is approxi-
mated by

√
w/M |q|r0, as it is shown in Appendix D. For

t→∞ (because we are interested in the long-time steady
behaviour) the asymptotic forms of R2(t) and ξ2(t) are

R2(t) = −R0

[
ln
(

1
2
ωαt

)
+ 1.578 +

1
2

iπ
]

(50)

ξ2(t) ≈ −πR0kBT t/~ (where coth
1
2
ωαt ∼ 1) (51)

i.e.,

lim
t→∞

ξ2(t) = −ηt, η = πR0/β~ = πR0kBT/~ (52)

where

R0 =
4(χ1 + χ2)2

π~w
(M/w)1/2 =

2Jµpr0
π~v0

,

ωα =
2µp

π

( w
M

)1/2

, T0 = ~ωα/KB. (53)

At R0 < 1 and T0 < T and R0 T/T0 < 1 for the pro-
tein molecules, one can evaluate the integral including in
equation (48) by using the approximation which is shown
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Γ2 = lim
t→∞

dW

dt
=

2

µp

� π
N

�2X
kk′

"
(kr0)2|g1(k) + 2g2(k)|2sech2[(πr0/2µp)(k − k′)]

[µ2
p + (k′r0)2][exp(β~ωk)− 1]

(2.43ωα)−R0

×

8>>>>><
>>>>>:

 
η2 +

1

~2

�
4

3
µ2

pJ + 2(k′r0)2J − ~ωk

�2
!(1+R0)/2

~2η2 +

�
4

3
µ2

pJ + 2(k′r0)2J − ~ωk

�2

9>>>>>=
>>>>>;

8><
>:1− 1

2

2
64R0π

2
+ (1−R0)

2
64

4

3
µ2

pJ + 2(k′r0)2J − ~ωk

~η

3
75
3
75

29>=
>;
#
. (56)

in Appendix D. The result is

1
π~

Re
∫ ∞

0

dt exp

{
−i
[
2J(k′r0)2 +

4
3
Jµ2

p − ~ωk
]
t/~

+R2(t) + ξ2(t)

}

≈ 1
π~

(2.43ωα)−R0Γ (1−R0)
[
η2 + (δ(k, k′)/~)2

]−(1−R0)/2

×
[

1− 1
2

[
πR0

2
+ (1−R0)

(
δ(k, k′)
η~

)]2
]
, (54)

where

δ(k, k′) = 2J(k′r0)2 +
4
3
µ2

pJ − ~ωk, Φ1 =
R0π

2
,

Φ2 =
[
(1−R0) tan−1

(
δ(k, k′)
η~

)]
(55)

The decay rate of the soliton, in such an approximation,
can be represented, from equations (48) and (54), by

see equation (56) above.

This is the final analytical expression for the decay rate
of the quasi-coherent soliton with two-quanta. Evidently,
it is different from that in the Davydov model [14]. To
emphasis the difference of the decay rate between the two
models we rewrite down the corresponding quantity for
the Davydov soliton [14]

ΓD =
1
~2

χ2
1

µD

(
2π
N

)2∑
kk′

(
~

2Mωk

)

× (kr0)2 sin2(kr0)sech2[(πr0/2µD)(k − k′)]
[µ2

D + (k′r0)2][exp(β~ωk)− 1]

×
(
ωD
α

ηD

)−RD0 ~2ηD

~2η2
D + [Jµ2

D/3 + J(k′r0)2 − ~ωk]
(57)

where

ηD = πRD
0 KBT/~, RD

0 =
2χ2

1

π~w

(
M

w

)1/2

,

ωD
α =

2µD

π

(
M

w

)1/2

· (58)

Table 2. Comparison of characteristic parameters in the
Davydov model and in our new model.

R0 T0(K) η(×1013/s)

New model 0.529 294 6.527

Davydov model 0.16 95 2.096

Equation (57) can also be found out from equation (48)
at n = 1 by using the Cottingham et al.’s approximation.

The two formulae above equations (56)
and (57) are completely different, not only for
the parameter’s values, but also the factors con-
tained in them. In equation (56) the factor,{

1−1
2

[
R0π

2 + (1−R0)
[(

4
3µ

2
pJ + 2(k′r0)2J−~ωk

)
/~η
]]2}

is added, while in equation (57) the factor,
(ωα/ηD)−R

D
0 ηD replaces the term (2.43ωd)−R0×

(η2+1/~2[4/3µ2
pJ+2(k′r0)2J−~ωk]2)(

1+R0
2 ) in equa-

tion (56) due to the two-quanta nature of the new
wavefunction and the additional interaction term in
the new Hamiltonian. In equation (56) the η, R0 and
T0 are not small, unlike in the Davydov model. Using
equation (20) and Table 1 we find out the values of η,
R0 and T0 at T = 300 K in both models, which are
listed in Table 2. From this table we see that the η,
R0 and T0 for the new model are about 3 times larger
than the corresponding values in the Davydov model due
to the increases of µp and of the non-linear interaction
coefficient Gp. Thus the approximations used in the
Davydov model by Cottingham, et al. [14] can not be
applied in our calculation of lifetime of the new soliton,
although we utilized the same quantum-perturbation
scheme. Hence we can audaciously suppose that the
lifetimes of the quasi-coherent soliton will greatly change.

5 Discussion for the lifetime of the new
soliton and results

The above expression, equation (56), allows us to com-
pute numerically the decay rate, Γ2, and the lifetimes of
the new soliton, τ = 1/Γ2, for values of the physical pa-
rameters appropriate to α-helical protein molecules. Us-
ing the parameter values given in equation (20), Tables 1
and 2, v = 0.2v0 and assuming the wavevectors are
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Fig. 1. Soliton lifetime τ relatively to τ0 as a function of
the temperature T for parameters appropriate to the α-helical
molecules in the new model in equation (5).

in the Brillouin zone we obtain values of Γ2 between
1.54× 1010s−1 − 1.89× 1010s−1. This corresponds to the
soliton lifetimes τ , of between 0.53×10−10s−0.65×10−10s
at T = 300 K, or τ/τ0 = 510− 630, where τ0 = r0/v0 is
the time for travelling one lattice spacing at the speed
of sound, equal to (M/w)1/2 = 0.96 × 10−13s. In this
amount of time the new soliton, travelling at two tenths
of the speed of sound in the chain, would travel several
hundreds of lattice spacings, that is several hundred times
more than the Davydov soliton for which τ/τ0 < 10 at
300 K [14] (i.e., the Davydov soliton traveling at a half
of the sound speed can cover less than 10 lattice spac-
ing in its lifetime). The lifetime is sufficiently long for the
new soliton excitation to be a carrier of bio-energy. There-
fore the quasi-coherent soliton is a viable mechanism for
the bio-energy transport at biological temperature in the
above range of parameters.

We are very interested in the relation between the life-
time of the quasi-coherent soliton and temperature. Fig-
ure 1 shows the relative lifetimes τ/τ0 of the new soli-
ton versus temperature T for a set of widely accepted
parameter values as shown in equation (20). Since one as-
sumes that v < v0, the soliton will not travel the length of
the chain unless τ/τ0 is large compared with L/r0, where
L = Nr0 is the typical length of the protein molecular
chains. Hence for L/r0 ≈ 100, τ/τ0 > 500 is a reason-
able criterion for the soliton to be a possible mechanism of
the bio-energy transport in protein molecules. The lifetime
of the quasi-coherent soliton shown in Figure 1 decreases
rapidly as temperature increases, but below T = 310 K it
is still large enough to fulfill the criterion. Thus the new
soliton can play an important roles in biological processes.

For comparison we plotted simultaneously log (τ/τ0)
versus the temperature relations for the Davydov soliton
and the new soliton with a quasi-coherent two-quanta
state in Figure 2. The temperature-dependence of log
(τ/τ0) of the Davydov soliton is obtained from equa-

Fig. 2. log(τ/τ0) versus the temperature for the soliton. The
solid line is the result of the new model, the dashed line is the
result of the Davydov model.

Fig. 3. τ/τ0 versus (χ1 + χ2) relation in equation (56).

tion (57). We find that the differences of values of τ/τ0
between the two models are very large. The value of τ/τ0
of the Davydov soliton really is too small, and it can only
travel fewer than ten lattice spacings in half the speed of
sound in the protein chain [14]. Hence it is true that the
Davydov soliton is ineffective for biological processes [14].

We can also study the dependency of the soliton life-
time on the other parameters by using equation (56). We
chose parameter values near the above accepted values
shown in equation (20). In the new model we know from
equation (56) that the lifetime of the soliton depends
mainly on the following parameters: coupling constants
(χ1 + χ2), M , w, J , phonon energy ~ωk, as well as on
the composite parameters µ(µ = µp), R0 and T/T0. At
a given temperature, τ/τ0 increases as µ and T0 increase.
The dependences of the lifetime τ/τ0, at 300 K on (χ1+χ2)
and µ are shown in Figures 3 and 4, respectively. Since
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Fig. 4. τ/τ0 versus µ relation. The solid and dashed lines are
results of equations (56) and (57), respectively.

µ is inversely proportional to the size of the soliton, and
determining the binding energy in the new model, there-
fore it is an important quantity. We regard it as an in-
dependent variable. In such a case the other parameters
in equation (56) adopt the values in equation (20). It is
clear from Figures 3 and 4 that the lifetime of the soliton,
τ/τ0, increases rapidly with increasing µ and (χ1 + χ2).
Furthermore, when µ > 5.8 and (χ1+χ2) ≥ 7.5×10−11 N,
which are values appropriate to the new model, we find
τ/τ0 > 500. For comparison we show the correspond-
ing result obtained using equation (57), for the original
Davydov model as a dashed line in Figure 4. Here we see
that the increase in lifetime of the Davydov soliton with
increasing µ is quite slow and the difference between the
two models increases rapidly with µ. The same holds for
the dependency on the parameter (χ1 +χ2), but the result
for the Davydov soliton is not drawn in Figure 3. These
results show again that the quasi-coherent soliton in the
new model is a likely candidate for the mechanism of bio-
energy transport in the protein molecules. In addition it
shows that a basic mechanism for increasing the lifetime
of the soliton in the biomacromolecules is to enhance the
strength of the exciton-phonon interaction.

In Figure 5 we plot τ/τ0 versus η. Since −η designates
the influence of the thermal phonons on the soliton, it is
also an important quantity. Thus, we regard it here as
an independent variable. The other parameters in equa-
tion (56) take the values in equation (20). From this figure
we see that τ/τ0 increases with increasing η. Therefore, to
enhance η can also increase the value of τ/τ0.

In order to understand the behavior of the quasi-
coherent soliton lifetime in very wide ranges, it is nec-
essary to study τ/τ0 in the limit ωat→ 0 in equation (49)
or equations (D1) and (D3) (i.e., this is in the initial case)
in which we can evaluate analytically the values of R2(t)
and ξ2(t). In fact, for ωat < 1 both R2(t) and ξ2(t) have
power-series expansions. To lowest order as ωat→ 0, one

Fig. 5. τ/τ0 versus η relation in equation (56).

finds from equation (49)

R2(t) ≈ −R0[iπ2 ωat/6 + 3ζ(3)(ωat)2] (59)

ξ2(t) ≈ −R0K
2
BTT0 π

2

3~2
t2, (60)

using coth (πωαt) ≈ [(πωαt)−1 +
π

3
ωαt].

Thus

1
π~

Re
∫ ∞

0

dt exp

{
−i

[
2J(k′r0)2 +

4Jµ2
p

3
− ~ωk

]
t

~

+R2(t) + ξ2(t)

}
≈ [4π(3ζ(3)R0K

2
BT

2
0

+R0π
2K2

BTT0/3]−1/2

× exp

−
[2J(k′r0)2 +

4
3
µ2

pJ − ~ωk + ~(R0π
2KBT )]2]

4[3ζ(3)R0K2
BT

2
0 +R0π2K2

BTT0/3]


(61)

when T/T0 > 1 and π4R0T/2µT0 > 1. The above inte-
gral is the generalization of the usual δ− function for en-
ergy conservation in zero-temperature perturbation the-
ory. Thus we can obtain from equations (48) and (61)



310 The European Physical Journal B

at n = 2 the decay rate of the soliton as

Γ2 =
2π3

µp~N2KB

(
π

R0 T0[3ζ(3)T0 + π2T/3]

)−1/2

×
∑
kk′

(kr0)2 | g1(k) + 2g2(k)|2
µ2

p + (k′r0)2
sech2

[(
πr0
2µp

)
(k − k′)

]

×
{

exp

 [2J(k′r0)2 +
4
3
µ2

pJ − ~ωk +
1
6
R0π

2KBT0]2

4[3ζ(3)R0K2
BT

2
0 +R0K2

BTT0π2/3]


× [exp (β~ωk)− 1]

}−1

·
(62)

The expression of the decay rate of the quasi-coherent
soliton in this limit is different from equation (56). There-
fore, studying properties of the lifetime of the new soli-
ton in such a case helps in understanding the behavior
of the soliton. A summary of the results obtained from
equation (62) are given in Figures 6–9. The dependency
of lifetime on temperature T is shown in Figure 6, which
has been obtained from the numerical evaluation of equa-
tion (62).

In Figures 7 and 8 we plot τ/τ0 versus (χ1 + χ2) and
versus µ, respectively, at T = 300 K. From Figures 6–8 we
see that τ/τ0 increases as T decreases and as µ and (χ1 +
χ2) increase. Furthermore, it is clear from this Gaussian
expression in equation (62) that the lifetime of the new
soliton will be large if µ and (χ1 + χ2)are larger, but the
Gaussian expression is very small for k and k′ between
−π/r0 and +π/r0, i.e., in the Brillouin zero. Obviously,
the temperature dependence of the lifetime of the new
soliton is mainly due to the temperature dependence of the
width of the Gaussian, which decreases with decreasing
temperature. The dashed line in Figure 8 is the result for
the Davydov soliton under the same conditions. It is clear
that the lifetime of the Davydov soliton is lower than that
of the new soliton, especially at large, although at low
µ the difference between them is small. Taking Figure 4
also into account we find that the lifetime of the Davydov
soliton is indeed generally low. However this is not the case
for the new soliton. In Figure 9 we plot τ/τ0 as a function
of T0 at T = 300 K. T0 is related to the Debye temperature
of the systems, therefore it is also an important quantity.
We regard it here as an independent variable and evaluate
other parameters as in equation (20). From this figure we
see that the lifetime of the new soliton is large if T0 is
either large or small, because the Gaussian expression in
equation (62) is very small for k and k′ between−π/r0 and
+π/r0. As a point of reference, note that these parameters
have the values T/T0 ≈ 1.03−1.06, JT/KBT

2
0 = 4.10 at

300 K and µ = 5.81 − 5.96 depending on whether the
widely accepted or the “three-channel”parameter values
for the protein are assumed. From these results it is clear
that using widely accepted, realistic parameter values, the

Fig. 6. τ/τ0 versus T relation in the new model in equa-
tion (62).

new model can satisfy the relation τ/τ0 > 500 at 300 K
and large µ and large T0. Hence the proposed new soliton
model provides a viable candidate for biological processes.

6 Conclusions

Why then does the quasi-coherent soliton have such high
lifetime? From equations (A4) and (13) and Tables 1 and 2
we see that the binding energy and localization of the new
soliton increase due to the increase of the nonlinear inter-
actions of exciton-phonon interaction, i.e., the new wave
function with two-quanta state and the new Hamiltonian
with the added interaction produce considerable changes
to the properties of the soliton. In fact, the non linear in-
teraction energy in the new model isGp = 8(χ1+χ2)2/(1−
S2)w = 3.8× 10−21J , and it is larger than the linear dis-
persion energy, J = 1.55 × 10−22J , i.e., the non-linear
interaction is so large that it can really cancel or suppress
the linear dispersion effects in the equation of motion of
this model. From this point we can also say that the soliton
is stable according to the conditions of formation and sta-
bility of the soliton in the soliton theory [27,28]. By com-
parison, the non-linear interaction energy in the Davydov
model is GD = 4χ2

1/(1−S2)w ≈ 1.18×10−21J and it is 3-4
times smaller than Gp. Thus the stability of the Davydov
soliton is weak compared to that of the new soliton. More-
over, the binding energy of the quasi-coherent soliton in
the new model is EBP = 4µ2

p J/3 = 7.8× 10−21J in equa-
tion (19), which is about 2 times larger than the thermal
energy,KBT = 4.14×10−21J , at 300 K, and about 6 times
larger than the Debye energy, KBΘ = ~ωD = 1.2×10−21J
(here ωD is Debye frequency), and it is approximately
equal to ε0/4 = 8.2 × 10−21J , i.e., it has same order
of magnitude of the energy of the amide-I vibrational
quantum, ε0. This shows that the quasi-coherent soli-
ton is robust due to the large energy gap between the
solitonic ground state and the delocalized state. In con-
trast the binding energy of the Davydov soliton is only
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Fig. 7. τ/τ0 versus (χ1 + χ2) relation in the new model in
equation (62).

Fig. 8. τ/τ0 versus µ relation in the new model in equa-
tion (62).

EBD = (χ4
1/3w

2J) = 0.188 × 10−21J which is about 41
times smaller than that of the new soliton, about 23 times
smaller than KBT and about 6 times smaller than KBΘ,
respectively. Therefore, it is easily destroyed by thermal
and quantum effects. Hence the Davydov soliton has very
small lifetime (about 10−12 ∼ 10−13s), and it is unstable
at 300 K [14]. In contrast, the quasi-coherent soliton can
provide a realistic mechanism for the bio-energy transport
in protein molecules.

The two-quanta nature of the quasi-coherent soliton
plays a more important role in the increase of lifetime
than that of the added interaction because of the following
facts. (1) The change of the nonlinear interaction energy

GP = 2GD

[
1 + 2

(
χ2
χ1

)
+
(
χ2
χ1

)2
]

and µp produced by the

added interaction in the new model are ∆G = GP(χ2 6=
0) − GP(χ2 = 0) = 1.08GD < GP(χ2 = 0) = 2GD, and
∆µ = µp(χ2 6= 0)− µp(χ2 = 0) = 1.08µD < µp(χ2 = 0) =
2µD respectively, i.e., the roles of the added interaction
on GP and µp are smaller than that of the two-quanta na-
ture. The two parameters GP and µp are responsible for
the lifetime of the soliton. Thus the effect of the former on

Fig. 9. τ/τ0 versus T0 relation. Here the solid and dashed
lines are the results in the new model in equation (62) and in
the Davydov model, respectively.

the lifetimes is smaller than that of the latter. (2) The con-
tribution of the added interaction to the binding energy of

the soliton is about E′BP = EBD

[
1 +

(
χ2
χ1

)]4
= 2.6EBD,

which is smaller than that of the two-quanta nature which
is E′′BD = 16EBD. Putting them together in equation (19)
we see that EBP ≈ 41EBD. (3) From the (χ1 + χ2)-
dependence of τ/τ0 in Figure 3 one finds directly already
τ/τ0 ≈ 100 at χ2 = 0 which is about 20 times larger than
that of the Davydov soliton under the same conditions.
This shows clearly that the major effect in the increase of
the lifetime is due to the modified wave function. There-
fore, it is very reasonable to refer to the new soliton as the
quasi-coherent soliton.

The above calculation helps to resolve the controver-
sies on the lifetime of the Davydov soliton, which is too
small in the region of biological temperature. Modifying
the wave function and the Hamiltonian of the model, how-
ever, we could produce a soliton stable at biological tem-
peratures. This result was obtained considering a new cou-
pled interaction between the acoustic and amide-I vibra-
tion modes and a wave function with quasi-coherent two-
quanta state. In such a way, the quasi-coherent soliton is
a viable mechanism for the bio- energy transport in living
systems.

The author would like to acknowledge National Natural Sci-
ence foundation of China for the financial support (grant
No: 19974043).
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Appendix A

Utilizing equation (13) and in a semiclassical approxima-
tion, we can get [2,27,28]

i~ϕ̇n = 2ε0ϕn−2J(ϕn+1+ϕn−1)+
2√
N

∑
q

[g1(q)(aq+a∗−q)

× ϕn + g2(q)((aq + a∗−q)ϕn+1 + q(aq + a∗−q)ϕn−1)]einr0q,

(A.1)

i~α̇q = ~ωqαq +
1√
N

∑
n

2[g1(q)|ϕn|2

+ g2(q)ϕ∗nϕn−1 + ϕ∗nϕn−1)]e−inr0q (A.2)

i~α̇∗−q = −~ωqα∗−q −
1√
N

∑
n

2[g1(q)|ϕn|2

+ g2(q)(ϕ∗nϕn−1 + ϕ∗nϕn−1)]e−inr0q (A.3)

from the generalized Hamilton’s equations:

i~
∂

∂t
ϕn(t) =

∂

∂ϕ∗n(t)
〈Φ|H|Φ〉

and

i~
∂

∂t
αq(t) =

∂

∂α∗q(t)
〈Φ|H|Φ〉

where αq(t) = 〈Φ|aq|Φ〉,

〈Φ|H|Φ〉 =
∑
n

2{ε0|ϕn|2 − Jϕ∗n(ϕn+1 + ϕn−1)

+
1√
N

∑
q

[g1(q)(α∗−q + αq)|ϕn|2 + g2(q)

× (α∗−q + αq)(ϕ∗nϕn+1 + ϕ∗nϕn−1)]einr0q}

+
∑
q

(~ωq|αq|2 +
1
2
~ωq).

In the above calculation we utilized equations (10, 11)
and [24]

〈Φ(t)|
∑
n

(B+
nBn+1 +BnB

+
n+1)|Φ(t)〉 =

2
∑
n

(ϕ∗nϕn+1 + ϕ∗n+1ϕn)

〈Φ(t)|
∑
n

(un+1 − un−1)B+
nBn|Φ(t)〉 =

2
∑
n,q

g1(q)(αq + α∗−q)|ϕn|2 einqr0

We can also get a nonlinear Schrödiger equation for
ϕn(t) in the continuum approximation from equa-
tions (A1–A3) [2,27,28]

i~
∂

∂t
ϕ(x, t) = 2(ε0 − 2J)ϕ(x, t)

− 2Jr2
0

∂2ϕ(x, t)
∂x2

− 2Gp|ϕ(x, t)|2ϕ(x, t)

(A.4)

It has the envelope soliton solution

ϕ(x, t) =
(µp

2

)1/2

sech
[
µp

r0
(x− vt)

]
× exp

[
i
~

(
~2vx

2Jr2
0

−Esolt

)]
(A.5)

where

µp =
2(χ1 + χ2)2

w(1− s2)J
, Gp =

8(χ1 + χ2)2

w(1− s2)J

s = v/v0 v0 = r0(w/M)1/2. (A.6)

Appendix B

The partial diagonalization of the Hamiltonian implies the
diagonalization of that part of the Hamiltonian in equa-
tion (24) which does not involve the creation and annihi-
lation operators of new phonons equation (22). Thus the
condition imposed into the functions Cj(x) contained in
equation (27) to realize such a diagonalization are equiv-
alent, in the continuum approximation, to the following
problems of eigenfunctions Cj(x) and eigenvalues Ej de-
termined by

2
[
−Jr2

0

∂

∂x2
+ i~v

∂

∂x
+ ε0 − 2J + V (x)

]
Cj(x)=EjCj(x).

(B.1)

For the above expression of V (x) in equation (26) there is
only one bound state in equation (B.1)

Cs(x) =
(
µp

2r0

)1/2

sech(µpx/r0)exp
[
i~vx/2Jr2

0

]
(B.2)

with energy

Es = 2
[
ε0 − 2J − ~

2v2

4Jr2
0

− Jµ2
p

]
(B.3)

and unbounded(delocalized) states

Ck(x) =
µp tanh(µpx/r0)− ikr0√

Nr0[µp − ikr0]
exp

[
ikx+ i~vx/2Jr2

0

]
(B.4)

with energy

Ek = 2
[
ε0 − 2J − ~

2v2

2Jr2
0

+ J(kr0)2

]
· (B.5)

The energy of the lowest unbounded state is greater than
that of the bounded state by the value 2µ2J . The functions
Ck(x) are normalized as follows:∫ ∞

−∞
dxC∗k(x)Ck′ (x) = δ(kr0 − k′r0),∫ ∞
−∞

dx|Ck(x)|2 = 1,
∫ ∞
−∞

dxC∗s (x)Ck(x) = 0
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Therefore,A+
s is an excitation which is localized at the lat-

tice distortion, while A+
k creates an unbounded excitation

with wave vector k.
In getting equation (B.1) the variable x was assumed

to be continuous and the chain length to tend to infinity
L = Nr0 →∞. Thus this wave vector k has a continuous
value between −∞ and ∞. In the following we mainly
use a discrete description. The continuous description is
transformed into a discrete one according to the rules

∫ ∞
∞

dx/r0 →
∑
n

,

∫ ∞
−∞

dx→ 2π
Nr0

∑
k

,

δ(kr0 − k′r0)→ N

2π
δkk′ , Cs(x)→ Cs(n),

Ck(x)→
(
N

2π

)1/2

Ck(n).

Utilizing equations (24, 25, 27) and (28), then the partially
diagonalized Hamiltonian in the new representation is just
equation (29).

Appendix C

We now calculate U(k, k′′, t) in equation (46) utilizing the
coherent state |u〉 [14,30] defined by bq|u〉 = uq|u〉 with

〈u|u′〉 = exp

{∑
q

[
u∗qu

′
q −

1
2
|uq|2 −

1
2
|uq|2

]}
,

|u〉 = exp
∑
q

[(uqb+q − u∗qbq)]

Utilizing the coherent state |u〉, the U(k, k′′, t) in equa-
tion (46) can be represented by

U(k, k′′, t) =
1
Zph

∫
dΩ(u)

∫
dΩ(u′′)(u

′′∗
k + u

′′

−k)

× (u∗−k′′ + u−k′′)〈u|exp
∑
q

(ωq − qv)(−β~+ it)b+q bq|u′′〉

× 〈u′′|exp

{
−i
∑
q

(ωq − qv)
[
(b+q bq) +

1
n
√
N

×(b+q αq + α∗qbq) +
1
n2

1
N
|αq|2

]
t

}
|u〉 (C.1)

where the integration measure is defined as

dΩ(u) =
∏
k

1
π

dxkdyk, with xk + iyk = uk

Since we can show that exp (τb+k b
k)|uk〉 =

exp
{

1
2
|uk|2 (eτ+τ∗ − 1)

}
|eτuk〉, it follows that the

first matrix element in equation (C.1) equals

〈uk| exp

[∑
q

(ωq − qv)(−β~+ it)b+q bq

]
|u′′k〉 =

exp
{
−
∑
k

(
1
2
|uk|2 +

1
2
|u′′k|2 − u∗ku′′k

× exp[(ωq − qv)(−β~+ it)])
}
·

The second matrix element in equation (C.1) can be rep-
resented as a path integral that can be evaluated exactly.
Utilizing the general relationship between the matrix ele-
ment and the path integral:

〈u′′k|exp[−iω(b+k bk + τ∗bk + b+k τ + τ∗τ)]|uk〉 =

exp
[
−1

2
(|u′′k |2 + |uk|2 − iω|τ |2t

]
×
∫ y(0)=uq

y∗(t)=u′′∗
D(y∗, y)exp[iT (y∗, y)] (C.2)

where

T (y∗, y) =
∫ t

0

dt′
{

iy∗(t′)
dy
dt′
−

ω[y∗(t)y(t′) + τ∗y(t′) + y∗(t′)τ ]
}
− iu′′k′

∗y(t).

We can evaluate the path integral by standard tech-
niques. The result for equation (C.2) is

exp
{
− 1

2
(|u′′k|2 + |uk|2 + u′′k

∗uke−iωt

− (1− e−iωt)(u′′t
∗τ + τ ∗uk + |τ |2)

}
· (C.3)

Substituting above the matrix elements obtained into
equation (C.1) we get

U(k, k′′, t) =
eRn(t)

Zph

∫
dΩ(u)

∫
dΩ(u′′)(u′′k

∗ + u′′−k)

× (u∗−k′′ + uk′′) exp
{
−
∑
q

(|uq|2 + |u′′q |2 − u∗qu′′q

× exp[(ωq − qv)(−β~+ it)]− u′′q ∗uq exp[−i(ωq − qv)t]

+
1
n

1√
N

(u′′qαq + u∗qα
∗
q)(1− exp[i(ωq − qv)t]))

}
· (C.4)

where

Rn(t) =
−1
n2N

∑
k

|αk|2(1 − exp[−i(ωk − kv)t]). (C.5)

The u′′ and u integrations can easily be finished.
For instance, the contribution from the term with the
u′′k
∗uk′′ factor, which we can denote by Ua(k, k′′, t) since
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Ua(k, k′′, t)=
exp[i(ωk − kv)t+Rn(t) + ξn(t)]

exp[β~(ωk − vk)]− 1

δkk′′ −
1
n2

1
N
α∗kαk′′(exp[i(ωk′′ − k′′v)t]− 1)(exp[−i(ωk − kv)t]− 1)

expβ~(ωk − vk)]− 1

·
(C.6)

it is associated with the absorption of a phonon, is

see equation (C.6) above

where

ξn(t) =
−4
n2N

∑
k

|αk|2 sin2

(
1
2

(ωk − vk)t
)

exp[β~(ωk − vk)]− 1
· (C.7)

We note that the breaking of the translational symmetry
by the deformation leads to off-diagonal terms correspond-
ing to violation of wavevector conservation. However, we
can prove that these terms are proportional to 1

Nα
∗
kαk′′

which can be neglected when either |k| or |k′′| is large as
compared to 4µp/πr0 as can be seen in the definition of
ak in equation (33). Furthermore when −π ≤ kr0 ≤ π and
µp < π2 the off-diagonal terms are negligible except for
a small region at the center of the Brillouin zone. Since
the small wavevector terms do not significantly contribute
to Γn due to the k-dependence of F̃ (q, k), we can, thus,
neglect the off-diagonal terms in Ua(k, k′′, t) in calculating
the Γn.

The energy of the soliton state is less than that of
the unlocalized exciton in the uniform lattice. Therefore,
the parts of Ua(k, k′′, t) corresponding to the absorption
of a phonon make the major contributions to the sum in
equation (46) at the temperature and parameter values
of interest, and their off-diagonal terms may also be ne-
glected just as above. Using the result of the Ua(k, k′′, t)
obtained from the above formulae, from equation (46) we
get the decay rate equation (48).

Appendix D

If the soliton velocity approaches zero we can get an an-
alytical expression for R2(t) and ξ2(t) at n = 2 defined
in equation (49) or equations (C.5) and (C.7) through in-
serting equation (33) into equations (C.5) and (C.7) and
applying the relation of 1

N

∑
q →

r0
2π
∫∞
−∞ dq, i.e.,

lim
v→0

R2(t) = −R0

∫ ∞
−∞

y

sh2y

× {[1− cos(ωαty)] + i sin(ωαty)}dy
(

here y =
πqr0
2µp

)
= −R0[ix′Ψ ′(1 + ix′) + Ψ(1 + ix′)− Ψ(1)] (D.1)

where

R0 =
4(χ1 + χ2)2

π~w

(
M

w

)1/2

=
2Jµpr0
π~v0

, ωα =
2µp

π

( w
M

)1/2

· (D.2)

Ψ is the digamma function, Ψ ′Å is its derivative and x′ =
ωαt = KBT0t/~.

ξ2(t) can be easily evaluated when v ≈ 0 and R0 < 1
at sufficiently high temperature T > T0(T0 = ~ωa/KB)

ξ2(t) =
−R0

ωα

[
T

T0

] ∫ ∞
0

dωk
sin2

[
1
2
ωkt

]
sh2(ωk/ωα)

=
R0T

T0
[1− πωαt coth(πωαt)] (D.3)

where we use the relation exp(β~ωk) ≈ 1 + β~ωk.
As t→∞ (because we are interested in the long-time

steady behaviour) the leading terms in the above asymp-
totic formulae of R2(t) and ξ2(t) are

R2(t) = −R0

[
ln
(

1
2
ωαt

)
+ 1.578 +

1
2

iπ
]

(D.4)

ξ2(t) ≈ −πR0kBT t/~ (D.5)

(where we approximated coth
1
2
ωαt ∼ 1), i.e.,

lim
t→∞

ξ2(t) = −ηt, η = πR0/β~ = πR0kBT/~. (D.6)

Except at low temperature, the x′(= ωαt)-dependent
term in the real part of R2(t) is small with respect to ξ2(T )
for p parameter values of interest and can be neglected.
Furthermore, since R0 < 1 ( but it is not very small, about
R0 ≈ 0.529) and T0 < T (but it is not too small, about
T0 ≈ 294 K) and R0T/T0 < 1 for the protein molecules,
one can evaluate the integral in equation (48) by using the
following approximation and utilizing the above results
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1

π~
Re

Z ∞
0

dt exp

�
−i[2J(k′r0)2 +

4

3
Jµ2

p − ~ωk]t/~ +R(t) + ξ(t)

�
≈ 1

π~
(2.43ωα)−R0Γ (1−R0)× [η2 + (δ(k, k′)/~)2]−(1−R0)/2

×
�

cos

�
πR0

2

�
× cos

�
(1−R0) tan−1

�
δ(k, k′)

η~

��
− sin

�
πR0

2

�
× sin

�
(1−R0) tan−1

�
δ(k, k′)

η~

���

=
1

η~
(2.43ωα)−R0Γ (1−R0)[η2 + (δ(k, k′)/~)2]−(1−R0)/2 cos(Φ1 + Φ2) ≈ 1

π~
(2.43ωα)−R0Γ (1−R0)[η2 + (δ(k, k′)/~)2]−(1−R0)/2

×
"

1− 1

2

�
πR0

2
+ (1−R0)

�
δ(k, k′)

η~

��2
#
, (D.7)

of equations (D.4–D.6)

see equation (D.7) above

where

δ(k, k′) = 2J(k′r0)2 +
4
3
µ2

pJ − ~ωk, Φ1 =
R0π

2
,

Φ2 =
[
(1−R0) tan−1

(
δ(k, k′)
η~

)]
· (D.8)
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